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Abstract. We study the conditions that a gauge transformation generator should satisfy. Then
considering a special class of constrained systems, we have derived the explicit form of the gauge
generator in terms of first-class constraints of the system. We have shown that the generator derived
can be demonstrated by two different known methods, and satisfies the conditions required in both
methods.

1. Introduction

Gauge invariance plays a crucial role in most developments of theoretical physics. Dirac was
the first who showed that a gauge theory is indeed a constrained system [1]. Although a large
number of gauge-invariant theories have been studied by physicists, there is still not a closed
formulation to find the complete set of gauge transformations of a given arbitrary system.
Some attempts have been made in this direction, both in Hamiltonian [2–6] and Lagrangian
[7, 8] formulations.

In the Hamiltonian formulation, one expects that gauge symmetry, like any other
symmetry, should be described by a generator which we call agauge generator. The explicit
form of the gauge generator can be given just for very simple constraint systems, but not for
the general case. However, there are some methods to get close to it, as far as possible. We will
discuss two existing methods in section 2. As we will see, in each method, some conditions
need to be imposed on the coefficients of expansion of the gauge generator. Going through the
calculations, one observes that, in each method, finding explicit solutions for the coefficients
of the gauge generator ispractically impossible; and at most one can give a proof for the
existence of the solution.

In this paper we consider a special class of constrained systems (see relations (17) and (18)
below) and solve the equations regarding the coefficients of the gauge generator in one of the
methods (section 3). In this way we derive an explicit form of the gauge generator. Thereafter
we deform it into the shape of the gauge generator of the other method, and show that it satisfies
the requirements of that method. In section 4 we present an example to show what happens
during the calculations. Section 5 is devoted to some concluding remarks.
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2. Gauge generator

2.1. Gauge transformation

Dynamical symmetry transformation (DST) is defined as any transformation which transforms
a solution of equations of motion into another solution. In this paper we define a gauge
transformation (GT) as a DST which contains arbitrary functions of time. Suppose(q(t), p(t))

is a solution of Hamilton–Dirac equations of motion. This means that there exist Lagrange
multipliersλa(t) a = 1, . . . ,M such that the time evolution equation of any functiong(q, p)
reads [1]

ġ(q, p) = [g,H ] + λa(t)[g,8a
0] (1)

where the symbol [, ] denotes Poisson brackets,H is the canonical Hamiltonian and8a
0 are

the set of primary constraints and summation over the repeated indices is understood. Suppose
that the gauge-transformed trajectory

q̄(t) = q(t) + δq(t)

p̄(t) = p(t) + δp(t)
(2)

is another solution of the equations of motion in phase space. We assume that one can derive the
infinitesimal gauge variation of phase space coordinates via the action of the gauge generator
G(q, p, t):

δq(t) = [q,G(q, p, t)]

δp(t) = [p,G(q, p, t)].
(3)

As stated above, for variation (3) to be a gauge transformation, the generatorG(q, p, t) should
contain some arbitrary functions of time.

On the other hand, the Lagrange multipliersλa(t)are not phase space coordinates, and their
gauge transformation cannot be defined directly from the generatorG. Therefore, in order
to complete the gauge transformation (2), we assume that the gauge-transformed Lagrange
multipliers

λ̄a(t) = λa(t) + δλa(t) (4)

can be defined in a suitable way, such that the whole set of variables(q̄, p̄, λ̄) also satisfy
equation (1), as follows:

ġ(q̄, p̄) = [g(q̄, p̄),H(q̄, p̄)] + λ̄a(t)[g(q̄, p̄),8a
0(q̄, p̄)]. (5)

It has been shown [2, 4, 5] that the necessary and sufficient conditions for a function
G(q, p, t) to be the generator of a gauge transformation, are as follows:

G = FC

[H,G] − ∂G
∂t

∼= PFC

[G,PFC]∼= PFC

(6)

where FC meansfirst classand PFC meansprimary first-class constraintand the symbol∼=
denotes a Dirac strong equality.

The main problem is to find a functionG(q, p, t) with the above properties. Assuming
that the Dirac conjecture [1] is valid, one expects that the complete set of first-class constraints
of the system should somehow be the building blocks of the generatorG. Two distinct methods
are proposed in this regard, so far, which will be discussed later in this section. However, due
to its close relationship with gauge symmetry, let us first give a few words about the constraint
structure.
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2.2. Constraint structure

As is well known [1], primary constraints are consequences of the definition of momenta. The
primary constraints should be valid over the course of time, so their time derivatives should
vanish. This leads to second-level constraints. The same thing should also be considered for
second- and higher-level constraints. Suppose the consistency of primary constraints from (1)
lead to8a

1, the consistency of8a
1 leads to8a

2, and so on.
We assume for convenience that the system is first class. This means that, using consistency

conditions, none of the Lagrange multipliers could be determined in terms of phase space
coordinates. Hence, using the equation (1) for constraints of any level, the second term on the
right-hand side should vanish weakly. This is possible if the Poisson bracket of constraints of
any level with the primary constraints vanish on the surface of the constraints known up to that
level, i.e.

[8a
n,8

b
0] =

M∑
c=1

n∑
l=0

Dabc
nl 8

c
l . (7)

The whole constraint structure of the system is composed of theconstraint chainsvia the
relation

8a
n = [8a

n−1, H ]. (8)

Each chain begins with a primary constraint and is also labelled according to it, for example, by
chain ‘a’ we mean the chain that begins with8a

0. We assume that at each level the constraint
chains are knitted simultaneously. In other words, after constructing allnth-level constraints
8a
n from the relation (8), one constructs the(n + 1)th-level constraints8a

n+1 in the same way,
and so on. However, during this procedure it is also possible that some chains terminate before
others.

Suppose that the chain which begins with8a
0, terminates afterA steps. This means that no

new constraint would emerge from the consistency condition of8a
A. This would be possible

only if the Poisson bracket of8a
A with the canonical Hamiltonian is a combination of the

previous constraints, i.e.

[8a
A,H ] =

M∑
a′=1

A∑
n′=0

Faa
′

n′ 8
a′
n′ . (9)

Here, the indexn′ cannot exceedA′, thelengthof the chaina′. For this reason we assume that
Faa

′
n′ vanishes forn′ > A′. To make these considerations simpler, we release the upper limit

of summation overn′ in (9) to be, sayA1, the length of the longest chain, but alternatively
impose the following condition on the coefficientsFaa

′
n′ :

Faa
′

n′ = 0 if n′ > A′ or n′ > A. (10)

Regarding different lengths of the chains, care is also needed in relation (7). If we denote
byC the length of the chainc, then it is obvious that no constraint8c

l with l > C should exist.
Therefore, we impose the condition

Dabc
nl = 0 if l > C (11)

without changing the upper limit of summation overl. The technique of introducing vanishing
coefficients instead of changing the limits, as in (10) and (11), would be useful in the next
section.
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Relations (7)–(9) give the complete constraint structure of our first-class system. The
coefficientsD andF in (7) and (9) are, in general, functions of phase space coordinates, and
as in [9] we call them Hamiltonian constraint structure coefficients (HCSCs).

An important point to add is that the Hamiltonian constraints introduced above are not
necessarilyirreducible. In other words, it may happen that the constraints8a

n, defined in (8),
are not independent functions of phase space coordinates. If this is the case, one can reduce
the number of constraints by choosing instead a smaller number of functions such that their
vanishing implies that8a

n = 0. This has been done in [3, 11]. Alternatively, here we keep all
the constraints in the same form that they emerge from relation (8), even though they can be
reducible.

2.3. Two methods

As mentioned before, there are two methods to construct a gauge generator satisfying the
conditions (6). In the first method [2–5], one assumes that the generator of GT, depends on a
set of infinitesimal arbitrary function of time,εa(t), and their time derivatives of several orders.
From (1), it is clear that there existM (the number of primary first-class constraints) gauge
degrees of freedom. So the number ofεa(t) inG should also beM. One can suggestG in the
following way:

G(q, p, t) =
M∑
a=1

A∑
n=0

Ga
A−n(q, p)

dn

dtn
εa(t) (12)

where the upper limitA, in general, may depend on the indexa. Then one can impose the
following conditions on the coefficientsGa

k , in order thatG(q, p, t) satisfy the conditions (6):[
Ga
k, constraint

] = constraint[
Ga
k,PFC

] = PFC

Ga
0 = PFC[
Ga
k,H

]
+Ga

k+1 = PFC[
Ga
A,H

] = PFC.

(13)

Now the problem is, given the set of primary and secondary constraints of a system, what
is the set ofGa

k which satisfy the conditions (13). In other words, does the conditions (13)
have any solution forGa

k? In [3], a complicated procedure to obtain an answer is proposed.
They show thatin principle one can find a solution for (13) locally. However, some closed
formulae that giveGa

k explicitly in terms of constraints of the system, seems inaccessible.
The second method [6], on the other hand, is based on the expansion of the generator

G(q, p, t) in terms of (first-class) constraints of the system, as follows:

G(q, p, t) =
M∑
a=1

A∑
n=0

Can(q, p, t)8
a
n. (14)

The coefficientsCan(q, p, t) should be determined such that the conditions (6) hold forG.
According to its construction,G is apparently first class. The other two conditions in (6)

impose the following conditions onCan [6]:

∂Can

∂t
+
[
Can,H

]
+

M∑
a′=1

Ca
′
A′F

a′a
n +Can−1 = 0

{
a = 1, . . . ,M

n = 1, . . . , A
(15)

M∑
a′=1

A′∑
n′=1

([
Ca

′
n′ ,8

a
0

]
+

M∑
a′′=1

A′∑
n′′=n′

Cn
′′
a′′D

a′aa′′
n′n′′

)
= 0 a = 1, . . . ,M. (16)
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For a definite chaina, there existA equations from (15) for(A + 1) unknownsCan . This
enables one to determine allCan (n < A) in terms of, say,CaA. To this end, one should
guessCaA in such a way that the resultingCan satisfy the set of equations (16). However, this
is not a simple task, in general. Therefore, this method has neither a closed-form answer
for G(q, p, t) in terms of the constraints, nor gives an explicit algorithm to obtain it in an
arbitrary case. Moreover, the existence of an answer forCan in (15) and (16) for a general
case is an open question, as mentioned in [6]. However, in the same reference, it is shown
that the generatorG(q, p, t) can be constructed using this method for systems having at most
second-level constraints, and also for a system with the following conditions:

Dabc
nl = 0 l 6= 0 (17)

Faa
′

n′ = constant. (18)

Although most of the physical examples of constraint systems such as Yang–Mills fall into the
first category, nevertheless the system described in (17) and (18) provides a meaningful and
non-trivial tool to construct the explicit form of the gauge generatorG(q, p, t) in terms of the
constraints of a system and to compare the two methods mentioned above. That is what we
will do in the following section.

3. Explicit form of the gauge generator

One can choose one of the methods mentioned in section 2 to derive the explicit form of the
gauge transformation generator for the system described by relations (17) and (18). We choose
the second method and try to find a solution forCan .

As mentioned before, considering just equations (15),CaA are at our disposal. It is
not difficult to see that if one choosesCaA as arbitrary functions of time, then considering
(18), the other coefficientsCan would also be only functions of time (independent of phase
space coordinates). This makes the Poisson brackets of coefficientsCan with H and primary
constraints in (15) and (16) vanish. Therefore, equation (16), taking into account (17), is
automatically satisfied. If one assumes

CaA = ηa(t) (19)

then from (15), withn = A− 1, one obtains

CaA−1 = −
dηa

dt
−

M∑
a′=1

ηa
′
Fa

′a
A . (20)

Inserting (19) and (20) in (15) gives

CaA−2 = (−1)2
d2ηa

dt2
+

M∑
a′=1

(
(−1)ηa

′
Fa

′a
A−1 + (−1)2

dηa
′

dt
F a

′a
A

)
. (21)

Repeating the same procedure, afterl steps we have

CaA−l =
(
− d

dt

)l
ηa(t) −

M∑
a′=1

l∑
r=1

Fa
′a
A−l+r

(
− d

dt

)r−1

ηa
′
(t) l = 1, . . . , A. (22)

One finally finds (afterA steps) all the coefficientsCan . Inserting them into the expansion (15)
for G gives

G(q, p, t) =
M∑
a=1

[
ηa8a

A +
A∑
l=1

((
− d

dt

)l
ηa −

M∑
a′=1

l∑
r=1

Fa
′a

A−l+r

(
− d

dt

)r
ηa
′
)
8a
A−l

]
. (23)
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In this form, the expansion of the gauge generator is sorted in terms of the level of
constraints. On the other hand, the coefficients are complicated combinations ofM arbitrary
functions of time,ηa(t) and their derivatives. Part of the complexity is due to the variability
of the upper limit of some summations in (23). However, this is not satisfactory, since sorting
in terms of the order of time derivatives of gauge variables (or pure gauge fields in the field
theory) is more acceptable than sorting in terms of the level of constraints. Constraints can
essentially be redefined at each level [3], and one can construct several constraint structures
without affecting the physical content of the system. Consequently, we prefer to change the
generator (23) in the form of relation (12), to make it more meaningful.

To reach this goal, we investigate a simple technique to make the summations in (23)
between fixed lower and upper limits. This trick enables us ultimately to change the order of
summations and writeG(q, p, t) in the desired form.

Suppose the constraint chains are numbered in decreasing length order, i.e. the chaina = 1
is the longest. Let its length beA1. One can make the length of all the chains equal by adding
to them a set ofvirtual vanishing constraints. In this way all constraint chains have lengthA1,
and one can release the conditiona < A, but alternatively for virtual constraints one should
assume

8a
n ≡ 0 A < n 6 A1. (24)

We can now rewrite (15) with fixed upper limits as

G(q, p, t) =
M∑
a=1

A1∑
n=0

Can8
a
n (25)

where forn > A Can can be chosen arbitrarily. Therefore, we assume that they satisfy the
recursive equation (15) too. To solve the whole set of equations (15) forn = 1, . . . , A1, this
time one should begin with coefficientsCaA1

. Assuming

CaA1
= εa(t) (26)

and taking assumption (10) into account, equation (15) for the added coefficients, reads:

∂Can

∂t
+Can−1 = 0 n = A + 1, . . . , A1 (27)

whose solution is

CaA1−l =
(
− d

dt

)l
εa(t) l = 0, . . . , A1− A. (28)

Note that the coefficients derived in (28) do not appear in the gauge generator (25), since they
are multiplied by vanishing8a

n (see equation (24)). Therefore, for a fixed labela, derivatives
of εa(t) up to orderA1− A do not appear inG. In this manner, the function

CaA = ηa(t) =
(
− d

dt

)A1−A
εa(t) (29)

is the first arbitrary function with labela that appears in the gauge generator. Considering
(29), the remainingCan are just derived in (22). It is only enough to introduceηa(t) from (29)
in (22) to obtain

CaA−l =
(
− d

dt

)l+A1−A
εa(t)−

M∑
a′=1

l∑
r=1

Fa
′a

A−l+r

(
− d

dt

)A1−A′+r−1

εa
′
(t)l = 1, . . . , A. (30)
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If we introduce the new variables

l′ = l +A1− A
J = A1− A′ + r − 1

(31)

and substitutel andr in terms of them; then the relation (30) reads

CaA1−l′ =
(
− d

dt

)l′
εa(t)−

M∑
a′=1

A−A′+l′−1∑
J=A1−A′

Fa
′a

A′−l′+J+1

(
− d

dt

)J
εa
′
(t)

l′ = A1− A + 1, . . . , A1.

(32)

To have non-vanishingFa
′a

... in the above relation, from (10), one condition is

J 6 l′ − 1< A1.

Now regarding the upper limit ofJ in the corresponding summation in (32), two things may
happen. IfA−A′+l′−1> A1, then one can truncate the summation atA1. (Nevertheless, it is
possible that the coefficientsFa

′a
... in the summand begin to vanish beforeJ touches the upper

limit, which is not disturbing.) On the other hand, ifA− A′ + l′ − 1 < A1, one can increase
the upper limit of summation overJ to A1. That is because, forJ = A − A′ + l′ − 1, the
second term in (32) would contain the coefficientFa

′a
A , and exceedingJ would give vanishing

Fa
′a
n which has no effect on the relation. Consequently, we are allowed to change (32) into the

following form:

CaA1−l′ =
(
− d

dt

)l′
εa(t)−

M∑
a′=1

A1∑
J=A1−A′

Fa
′a

A′−l′+J+1

(
− d

dt

)J
εa
′
(t)

l′ = A1− A + 1, . . . , A1.

(33)

Now, considering (24), the gauge generator (25) can be written as

G(q, p, t) =
M∑
a=1

A1∑
l′=A1−A

CaA1−l′8
A
A1−l′ . (34)

Inserting (33) into (34) gives

G(q, p, t) =
M∑
a=1

A1∑
l′=A1−A

8a
A1−l′

(
− d

dt

)l′
εa

−
M∑
a=1

A1∑
l′=A1−A

M∑
a′=1

A1∑
J=A1−A′

Fa
′a
A′−l′+J+18

a
A1−l′

(
− d

dt

)J
εa
′
. (35)

In the second term above, we have two similar summations overa and a′ (followed by
subsequent similar summations overl′ andJ ), which can be easily interchanged. In fact,
this is the main reason for trying to derive the relation (33) as it is. Changing the order of the
summations, and then exchanging the namesa′ ↔ a andl′ ↔ J (just in the second term of
(35)) gives

G(q, p, t) =
M∑
a=1

A1∑
l′=A1−A

8a
A1−l′

(
− d

dt

)l′
εa

−
M∑
a=1

A1∑
l′=A1−A

M∑
a′=1

A′∑
J=A1−A′

Faa
′

A−J+l′+18
a′
A1−J

(
− d

dt

)l′
εa. (36)
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This can be rewritten in the form we desired, i.e.

G(q, p, t) =
M∑
a=1

A1∑
l′=A1−A

Ga
A1−l′

(
− d

dt

)l′
εa(t) (37)

where

Ga
A1−l′ = 8a

A1−l′ −
M∑
a′=1

A1∑
J=A1−A′

Fa
′a

A−J+l′+18
a′
A1−J . (38)

Finally, to simplify the form of gauge generator (37) by lowering the order of time derivatives,
it is better to replaceεa(t) with the set of arbitrary functionsηa(t) introduced in (29) and also
again use the indexl instead ofl′ (see equation (31)). The result is

G(q, p, t) =
M∑
a=1

A∑
l=0

Ga
A−l

(
− d

dt

)l
ηa(t) (39)

where

Ga
k = 8a

k −
M∑
a′=1

A′∑
s=0

Fa
′a

(A−k)+s+18
a′
s . (40)

Relations (39) and (40) are our final result for the gauge transformation generator. In this
form one can easily observe the way arbitrary functions of time and their derivatives appear
in a gauge transformation. As can be seen from (40) the coefficientsGa

k are some definite
combinations of (first-class) constraints of the system.

The final task is to be sure that the set of coefficientGa
k in (39), viewed as the coefficients

of expansion of the gauge generator in the first method (relation (12)), do really satisfy the
conditions (13). SinceGa

k are totally composed of (first-class) constraints, they are first-class
objects and the first condition of (13) is satisfied. Moreover, from assumption (17) it is obvious
that their Poisson brackets with PFCs are PFC. So the second condition of (13) is also satisfied.
To verify the third condition, one can write

Ga
0 = 8a

0 −
M∑
a′=1

A′∑
s=0

Fa
′a

A+s+18
a′
s .

The second term above vanishes due to (10), showing thatGa
0 = 8a

0 = PFC.
The fourth condition can be verified by a simple calculation. Using (8) it is not difficult

to see that [
Ga
k,H

]−Ga
k+1 =

M∑
a′=1

Faa
′

A−k8
a′
0 = PFC.

Finally, to verify the last condition of (13), using (10) one can write

Ga
A = 8a

A −
M∑
a′=1

A′−1∑
s=0

Faa
′

s+18
a′
s .

Then, direct calculation by use of (8) and (9) shows that[
Ga
A,H

] = M∑
a′=1

Faa
′

0 8a′
0 = PFC.

In this way, we see that the gauge generator (39) with coefficientsGa
k given in (40),

is indeed a solution of conditions (13) of the first method. Consequently, beginning with
equations (15) and (16) for the coefficientsCan of the gauge generator in the second method,
we have succeeded in finding a gauge generator with the first method.
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4. Example

Consider the Lagrangian

L = ẋż + zẋ + yz + xz. (41)

The momenta are

px = ż + z

py = 0

pz = ẋ.
(42)

The primary constraint of the system is

80 = py. (43)

The total Hamiltonian reads

HT = PxPz − zPz − yz− zx + λpy. (44)

The secondary constraints are derived from (8) as follows:

81 = [py,HT ] = z
82 = [z,HT ] = px − z.

(45)

There is only one constraint chain, and the chain indicesa, a′, . . . can be dropped. The
constraint82 is the terminating element of the chain (i.e.A = 2). Its Poisson bracket with
Hamiltonian reads

[82, H ] = 2z− px = 81−82. (46)

Comparing this relation with (9) shows thatF0 = 0,F1 = 1 andF2 = −1.
On the other hand, the Poisson brackets of constraints with each other vanishes identically.

Consequently, from (7) we haveDnl = 0 for all n andl. Now everything is prepared to write
down the gauge generator, which can be written from (39) in the following form:

G(q, p, t) = G0
d2η

dt2
−G1

dη

dt
+G2η. (47)

From (40) and the data regarding8k andFn, one reads

G0 = 80 = py
G1 = 81− F280 = z + py

G2 = 82 − F180 − F281 = px − py.
(48)

Therefore, the gauge transformation generator is

G(q, p, t) = η̈py − η̇(py + z) + η(px − py). (49)

It is not difficult to find the gauge variations of the coordinates and momenta from (3) and
(49) and then verify that they really transform a solution of equations of motion into another
solution.

To see, in this simple example, what has happened behind the lengthy derivation of the
coefficientsGa

k in (39), one can begin again with relation (14) for the gauge generator:

G(q, p, t, ) =
2∑
n=0

Cn8n. (50)
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Then, equations (15) forCn read

C1 = −∂C2

∂t
− [C2, H ] + C2

C0 = −∂C1

∂t
− [C1, H ] − C2.

(51)

AssumingC2 = η(t) one obtains

C1 = −η̇ + η

C0 = η̈ − η̇ − η.
(52)

Inserting (52) into (50) and sorting the result in the order of time derivatives (which is the main
point), will again give the gauge generator (49).

5. Concluding remarks

In this paper we proceed to the problem of the relationship between gauge transformations
and first-class constraints of a system. We first reviewed the conditions that the generator
of gauge transformations should obey (conditions (6)). Considering the gauge generator in
the formG = ∑Ga

n(d
nεa/dtn), some authors [4, 5, 10] have equatedGa

n with constraints of
different levels (primary, secondary, etc) and then derived the gauge generator with the required
conditions. This method, even though it works for some simple constrained systems such as
Yang–Mills, is not suitable for the general case.

This difficulty has been observed in the literature. In [3] the authors proved that in
principle there exists a procedure to find the coefficientsGa

n in terms of constraints of the
system. A closed and clear result is, however, far from being reached with this method. In
[6] a gauge generator of the formG =∑Can(q, p, t)8

a
n(q, p), where8a

ns are constraints of
different levels, is considered. This generator is written directly in terms of the constraints, but
unfortunately the conditions onCan (which originates from the conditions onG), are difficult
to handle. Furthermore, in the general case it seems impossible to prove the existence of any
solution for theCan .

However, in our opinion the above-mentioned difficulties should not prevent one from
getting a general idea of how the generator of gauge transformations depends on the constraint
structure of a system. For this reason, we considered a special class of constrained systems
(described in relations (17) and (18) above). Then writing the gauge generator in the form
G =∑Can8

a
n, we constructed a consistent solution forCan in terms of a different order of time

derivatives of arbitrary functionsεa(t). Then, changing the order of summation (with some
technical details), we found the gauge generator in the formG =∑Ga

n(d
nεa/dtn), whereGa

n

are expressed explicitly in terms of constraints of different levels (relations (39) and (40)).
We think that this work can better illuminate the relationship between gauge

transformations and first-class constraints of the system. We emphasize (and our investigation
in this paper shows) that finding a closed result for the gauge generator in terms of constraints
of a system seems impossible for the generic case. However, it seems better to pay the price
of considering some limitations on the constraint algebra, in order to observe explicitly the
interesting relationship between gauge symmetry and constraint structure.

As far as we know, except for some simple systems with just one or two levels of constraints,
our results is the clearest and most explicit formula for the gauge generator. One way to extend
the present result toward the most general case would be to find an algorithm to redefine the
constraints of an arbitrary system in such a way that they satisfy the conditions (17) and (18),
which we considered here.
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